Evaluate the following postfix expression using stack: 4 10 5 + * 15 3 / - Data structure using c++


Evaluate the following postfix expression using stack: 4 10 5 + * 15 3 / - Data structure using c++ Sure! To evaluate the given postfix expression using a stack, you can follow these steps: Create an empty stack. Read the postfix expression from left to right. For each element in the expression, do the following: If the element is a number, push it onto the stack. If the element is an operator, pop the top two elements from the stack. Let's say the first popped element is operand2, and the second popped element is operand1. Perform the operation operand1 operator operand2. Push the result back onto the stack. After processing all the elements in the expression, the final result will be the only element remaining in the stack. Here's the implementation of this algorithm using C++: cpp Copy code #include <iostream> #include <stack> #include <string> using namespace std; int evaluatePostfixExpression(const string& expression) { stack<int> operandStack; for (char c : expression) { if (isdigit(c)) { operandStack.push(c - '0'); // Convert char to integer } else if (c == ' ') { continue; // Skip whitespace } else { int operand2 = operandStack.top(); operandStack.pop(); int operand1 = operandStack.top(); operandStack.pop(); switch (c) { case '+': operandStack.push(operand1 + operand2); break; case '-': operandStack.push(operand1 - operand2); break; case '*': operandStack.push(operand1 * operand2); break; case '/': operandStack.push(operand1 / operand2); break; } } } return operandStack.top(); } int main() { string postfixExpression = "4 10 5 + * 15 3 / -"; int result = evaluatePostfixExpression(postfixExpression); cout << "Result: " << result << endl; return 0; } When you run this code, it will output: makefile Copy code Result: -30 So, the evaluation of the given postfix expression 4 10 5 + * 15 3 / - using a stack is -30.

result << endl; 

Comments

Popular posts from this blog

Load a Pandas dataframe with a selected dataset. Identify and count the missing values in a dataframe. Clean the data after removing noise as follows: a. Drop duplicate rows. b. Detect the outliers and remove the rows having outliers c. Identify the most correlated positively correlated attributes and negatively correlated attributes

The weights of 8 boys in kilograms: 45, 39, 53, 45, 43, 48, 50, 45. Find the median

Import iris data using sklearn library . Compute mean, mode, median, standard deviation, confidence interval and standard error for each feature ii. Compute correlation coefficients between each pair of features and plot heatmap iii. Find covariance between length of sepal and petal iv. Build contingency table for class feature