Download any dataset and do the following: a. Count number of categorical and numeric features b. Remove one correlated attribute (if any) c. Display five-number summary of each attribute and show it visually
Download any dataset and do the following: a. Count number of categorical and numeric features b. Remove one correlated attribute (if any) c. Display five-number summary of each attribute and show it visually CODE import pandas as pd import seaborn as sns import matplotlib.pyplot as plt # Load the Iris dataset into a pandas DataFrame iris_df = pd.read_csv('iris.data', header=None, names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) # Count the number of categorical and numeric features categorical_features = iris_df.select_dtypes(include=['object']).columns numeric_features = iris_df.select_dtypes(include=['float64']).columns print(f"Number of categorical features: {len(categorical_features)}") print(f"Number of numeric features: {len(numeric_features)}") # Calculate the correlation matrix correlation_matrix = iris_df[numeric_features].corr() # Find the ...